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1. Introduction 

Modern industrial robots are mostly (human) arm-inspired mechanisms with serially 
arranged discrete links. When it comes to industrial environment where the workspace is 
structured and predefined this kind of structure is fine. This type of robots are placed in 
carefully controlled environments and kept away from human and their world.  
When it comes to robots that must interact with the natural world, it needs to be able to 
solve the same problems that animals do. The rigid structure of traditional robots limit their 
ability to maneuver and in small spaces and congested environments, and to adapt to 
variations in their environmental contact conditions. For improving the adaptability and 
versatility of robots, recently there has been interest and research in “soft” robots. In 
particular, several research groups are investigating robots based on continuous body 
“continuum” structure. If a robot’s body is soft and/or continuously bendable it might 
emulate a snake or an eel with an undulating locomotion (Walker & Carreras, 2006). 
An ideal tentacle manipulator is a non-conventional robotic arm with an infinite mobility. It 
has the capability of takeing sophisticated shapes and of achieving any position and 
orientation in a 3D space. Behavior similar to biological trunks, tentacles, or snakes may be 
exhibited by continuum or hyper-redundant robot manipulators (Walker et al., 2005). Hence 
these manipulators are extremely dexterous, compliant, and are capable of dynamic 
adaptive manipulation in unstructured environments, continuum robot manipulators do not 
have rigid joints unlike traditional rigid-link robot manipulators. The movement of the 
continuum robot mechanisms is generated by bending continuously along their length to 
produce a sequence of smooth curves. This contrasts with discrete robot devices, which 
generate movement at independent joints separated by supporting links. 
The snake-arm robots and elephant’s trunk robots are also described as continuum robots, 
although these descriptions are restrictive in their definitions and cannot be applied to all 
snake-arm robots (Hirose, 1993). A continuum robot is a continuously curving manipulator, 
much like the arm of an octopus (Cowan & Walker, 2008). An elephant’s trunk robot is a 
good descriptor of a continuum robot (Hutchinson, S.; Hager et al., 1996). The elephant’s 
trunk robot has been generally associated with an arm manipulation – an entire arm used to 
grasp and manipulate objects, the same way that an elephant would pick up a ball. As the 
best term for this class of robots has not been agreed upon, this is still an emerging issue. 
Snake-arm robots are often used in association with another device meant to introduce the 
snake-arm into the confined space.  
However, the development of high-performance control algorithms for these manipulators 
is quite a challenge, due to their unique design and the high degree of uncertainty in their 
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dynamic models. The great number of parameters, theoretically an infinite one, makes very 
difficult the use of classical control methods and the conventional transducers for position 
and orientation.” must be moved after the paragraph “An ideal tentacle manipulator is a 
non-conventional robotic arm with an infinite mobility. It has the capability of takeing 
sophisticated shapes and of achieving any position and orientation in a 3D space. These 
systems are also known as hyper redundant manipulators and, over the past several years, 
there has been a rapid expanding interest in their study and construction. 
An ideal tentacle manipulator is a non-conventional robotic arm with an infinite mobility. It 
has the capability of takeing sophisticated shapes and of achieving any position and 
orientation in a 3D space. These systems are also known as hyper redundant manipulators 
and, over the past several years, there has been a rapid expanding interest in their study and 
construction. 
The control of these systems is very complicated and a great number of researchers tried to 
offer solutions for this difficult problem. In (Hemami, 1984); (Suzumori et al., 1991) it 
analyses the control by cables or tendons meant to transmit forces to the elements of the arm 
in order to closely approximate the arm as a truly continuous backbone. Also, Mochiyama 
has investigated the problem of controlling the shape of an HDOF rigid-link robot with two-
degree-of-freedom joints using spatial curves (Mochiyama & Kobayashi, 1999). Important 
results were obtained by Chirikjian (Chirikjian, 1993) who laid the foundations for the 
kinematic theory of hyper redundant robots. His results are based on a “backbone curve” 
that captures the robot’s macroscopic geometric features. 
The inverse kinematic problem is reduced to determining the time varying backbone curve 
behaviour (Takegaki & Arimoto, 1981). New methods for determining “optimal” hyper-
redundant manipulator configurations based on a continuous formulation of kinematics are 
developed. In (Gravagne & Walker, 2001), Gravagne analysed the kinematic model of 
“hyper-redundant” robots, known as “continuum” robots. Robinson and Davies (Robinson 
& Davies, 1999) present the “state of art” of continuum robots, outline their areas of 
application and introduce some control issues. The great number of parameters, 
theoretically an infinite one, makes very difficult the use of classical control methods and the 
conventional transducers for position and orientation. 
The lack of no discrete joints is a serious and difficult issue in the determination of the 
robot’s shape. A solution for this problem is the vision based control of the robot, kinematics 
and dynamics. 
The research group from the Faculty of Automation, Computers and Electronics, University 
of Craiova, Romania, started working in research field of hyper redundant robots over 25 
years ago. The experiments started on a family of TEROB robots which used cables and DC 
motors. The kinematics and dynamics models, as well as the different control methods 
developed by the research group were tested on these robots. Starting with 2008, the 
research group designed a new experimental platform for hyper redundant robots. This new 
robot is actuated by stepper motors. The rotation of these motors rotates the cables which by 
correlated screwing and unscrewing of their ends determine their shortening or prolonging, 
and by consequence, the tentacle curvature (Blessing & Walker, 2004). Segments were 
cylindrical in the initial prototype, and cone-shaped in actual prototype. The backbone of 
the tentacle is an elastic cable made out of steel, which sustains the entire structure and 
allows the bending. Depending on which cable shortens or prolongs, the tentacle bends in 
different planes, each one making different angles (rotations) respective to the initial 
coordinate frame attached to the manipulator segment – i.e. allowing the movement in 3D. 
Due to the mechanical design it can be assumed that the individual cable torsion, 

www.intechopen.com



Hyper Redundant Manipulators   

 

29 

respectively entire manipulator torsion can be neglected. Even if these phenomena would 
appear, the structure control is not based on the stepper motors angles, but on the 
information given by the robotic vision system which is able to offer the real spatial 
positions and orientations of the tentacle segments.  
 

 
Fig. 1. A tentacle arm prototype 

2. Kinematics 

In order to control a hyper-redundant robot it has to develop a method to compute the 
positions for each one of his segments (Immega & Antonelli, 1995). By consequence, given a 
desired curvature S*(x, tf) as sequence of semi circles, identify how to move the structure, to 
obtain s(x, t) such that  

 *lim ( , ) ( , )
ft t fs x t S x t→ =  (1) 

where x is the column vector of the shape description and tf is the final time (see Fig. 2). 
 

 
Fig. 2. The description of the desired shape 
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To describe the tentacle’s shape we will consider two angles (α, θ) for each segment, where θ 
is the rotation angle around Z-axis and α is the rotation angle around the Y-axis (see Fig. 2). 
To describe the movement we can use the roto-translation matrix considering θ = 2β as 
shown in Fig. 3. 
 

 

Fig. 3. Curvature and relation between θ and β 

The generic matrix in 2D that expresses the coordinate of the next segment related to the 
previous reference system can be written as follow: 

 
( ) ( )( ) ( )

⎥⎥
⎥
⎦

⎤
⎢⎢
⎢
⎣

⎡
⋅⋅⋅
⋅⋅⋅

−
100

)cos(L2cos2sin

)sin(L2sin2cos

βββ
βββ

 (2) 

In 3D space we cannot write immediately the dependence that exists between two segments. 
This relation can be obtained through the pre-multiplication of generic roto-translation 
matrix. One of the possible combinations to express the coordinate of the next segment 
related to the frame coordinate of the previous segment is the following: 

 : ( ) ( ) ( ) ( )i i i i i i i i
generic z y y zR R Tr V R Rθ α θ= ⋅ ⋅ ⋅  (3) 

where ( )i i
zR θ  and ( )i i

yR α  are the fundamental roto-translation matrix having 4x4 elements 
in 3-D space, and Try(Vi) is a 4x4 elements matrix of pure translation in 3-D space and where 
Vi is the vector describing the translation between two segments expressed in coordinate of 
i-th reference system.e main problem remains to obtain an imposed shape for the tentacle 
arm. In order to control the robot, we need to obtain the relation between the position of the 
wires and the position of the segment. 
Here, a decoupled approach is used for the robot control scheme. Thus the segments are 
controlled separately, without considering the interaction between them. Considering the 
segments of the tentacle separately, then (α, θ)i is the asigned coordinate of i-th segment. 
Having as purpose to command the robot to reach the position (α, θ)i the following relation 
is useful: 

  0CBL
R θθ= ∀ ≠  (4) 

centre 

original position of the
segment 

L

θ

β

2β
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where R represents the curvature’s radius of the central bone and CBL  is a constant, equal to 
the length of the central bone. 
Once we have θ  and α together as parameters of the desired shape, and after we obtained R, 
we can compute the corresponding lengths of the wires. Depending on the types of wires 
and on the structure of the tentacle, we must choose the way to compute the length of each 
wire. 
For the hard wire, made from the same material as the central bone, and by consequence 
having the same elasticity, referring to Fig. 4, we can write: 
 

 
Fig. 4. Different types of wires. 
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For the soft wires, we can write: 

 

[ ] ( )
[ ] ( )
[ ] ( )⎪⎪

⎪
⎩

⎪⎪
⎪
⎨

⎧

⋅⋅=
⋅⋅=
⋅⋅=

i/

i/sin
RL

i/

i/sin
RL

i/

i/sin
RL

33w

22w

11w

θ
θθ

θ
θθ

θ
θθ

 (6) 

where Lwn is the length of the n-th wire and Ri is the radius of the curvature of the real i-th 
wire.  
Farther it can be written: 

 ( ) cos( )n nR R R α= − Δ ⋅  (7) 

where ΔR is constant equal to the distance between the center and the wires and αn is: 
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α α
α α
α α

= −⎧⎪ = ° −⎨⎪ = ° −⎩
 (8) 

Obviously the equations (5) and (6), become the same for i → ∞. 
In order to reach the desired shape in a finite time tf, we should choose the appropriate law 
for the time variation of the displacements and speed for the three wires, going from the 
home position to the final position. For each instant, the wires must be moved in order to 
avoid elongation or compression of it self.   
The reference systems for each segment are oriented with the X-axes passing through the 
first wire. That means that the angles considered between the wires and the desired 
directions are as in the equation (8). 
We can obtain the correlation between these angles and the bending direction of the 
segment. E.g. if the direction is α =2/3π, that means we intend to bend the tentacle in the 
direction of the second wire with the imposed value of θ  degrees. In this case, if we will 
move the second wire of ΔLw2, we should move the first and third wires with ΔLw2/2 and 
with the apropiate speed in order to maintain this relation during the movement. 
Once we know the angle α, we can obtain the value ( )cosi iR R αΔ = Δ ⋅ , defining the 
displacements of the wires. 
The algorithm that we are using, assigns the speed of the wires proportional to ΔRi in order 
to go from the home position (θ =0, α =0) to the position (α, θ)i with a constant speed of the 
motors. 
In fact, given the final time tf and the starting time ti, after we obtained the displacement of 
the wires we impose the speed in order to reach the desired position in (tf-ti) seconds. 
So the speed is: 

 
( )

( )
wi f CB

wi

f i

L t L
L

t t

−= −�  (9) 

Our structure does not have encoders. Counting the impulses given to the motors, we can 
evaluate the lengths [Lw1, Lw2, Lw3]. We use these values in order to obtain (α ,θ)i. The 
algorithm’s steps are the following. 
For the n-th rigid wire: 

 cos( )wn CB nL L Rθ α= − ⋅ Δ ⋅  (10) 

Considering the equation (8) and (10), evaluating these for all the wires we can obtain: 
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 (11) 

Considering again the equation (10) for the first and second wires, we can write: 

 1 1 2 2cos( ) cos( )w wL R L Rθ α θ α+ Δ ⋅ ⋅ = + Δ ⋅ ⋅  (12) 
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Replacing the (8) we obtain θ in function of α: 

 ( ) ( )1 22

3cos 3 sin
w wL L

R
θ α α

−= ⋅Δ −  (13) 

And considering the eq. (10) for the third wire: 

 
( ) ( ) ( )( )

( ) ( )1 2

3 1

2 3cos 3 sin

3cos 3 sin

w w

w w

L L
L L

α α
α α

⋅ − ⋅ −= + −  (14) 

Finally the α angle can be obtained using the function atan2. 

 ( )( )2 3 1 2 3atan2 3 ,2w w w w wL L L L Lα = − − −  (15) 

where atan2 is an extension of arctan(y/x) on more quadrant having the following form: 
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0y ,0xif)x/yatan(

π
π

π
π

 (16) 

The same methodology can be applied for a tronconical robot. The following paragraphs 
will show how the equations change. The geometry of one segment for the 2D case is 
described in Fig. 6. The curvature’s angle θ of the segment is considered as the input 
parameter, while the lengths L1 and L2 of the control wires are the outputs. 
 

 

Fig. 5. Projection of the wire to get the α direction 
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Fig. 6. The geometry of one segment. 

The radius R of the segment curvature is obtained using equation (17): 

 
H

R θ=  (17) 

where H is the height of the segment. The following lengths are obtained from Fig. 5, based 
on the segment curvature: 

 11 4 1 12 1 2

21 3 1 22 2 2

2 2

2 2

L CP R D L CP R D

L CP R D L CP R D

= = + = = +
= = − = = −  (18) 

where D1 and D2 are the diameters of the segment end discs. Based on the Carnot theorem, 
the lengths A1 and A2 are then obtained:  

 
2 2 2 2

1 11 12 11 12

2 2 2 2
2 21 22 21 22

2 cos

2 cos

A L L L L

A L L L L

θ
θ

= + − ⋅ ⋅ ⋅
= + − ⋅ ⋅ ⋅  (19) 

The control wires curvature radius R1 and R2 are given by the relations (20): 

 1 1 2 22 sin 2 2 sin 2R A R Aθ θ= ⋅ = ⋅  (20) 

Finally, the lengths of the control wires are obtained as in (21): 

 
1 1 1

2 2 2
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/ 2 sin

w

w
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θ
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θ θ
θ θ

= ⋅ = ⋅ ⋅
= ⋅ = ⋅ ⋅  (21) 

For the 3D case, a virtual wire is considered, which gives the α direction of the curvature. 
Considering one virtual wire in the direction of the desired curvature having length 
calculated as follows. Firstly the following lengths are computed: 

 
11 1 1 12 2 1

21 1 2 22 2 2

31 1 3 22 2 3

2 cos( ) 2 cos( )

2 cos( ) 2 cos( )

2 cos( ) 2 cos( )
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 (22) 
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where αn is according to Fig. 5: 
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α α
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= −⎧⎪ = ° −⎨⎪ = ° −⎩
 (23) 

Based on (19) and (20) the curvature radiuses R1, R2 and R3 of the three control wires are 
then obtained. Finally the lengths of the control wires are computed with (24): 

 
1 1

2 2

3 3

w

w

w

L R

L R

L R

θ
θ
θ

= ⋅
= ⋅
= ⋅

 (24) 

Apart from the system presented we can obtain two useful relations: 

 

3

1
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1

cos( ) 0

1

3

i
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wii
L L

α
=

=

⎧ =⎪⎪⎨⎪ =⎪⎩

∑
∑  (25) 

The second equation of (25), can be utilized to estimate the virtual compression or the 
extension of the central bone. We call that virtual compression because before we compress 
the central bone, the robot will twist to find the shape to guaranty the wrong length of the 
wires. 

3. Dynamics 

3.1 Theoretical model 

The essence of the tentacle model is a 3-dimensional backbone curve C that is parametrically 
described by a vector ( ) 3r s ∈R  and an associated frame ( ) 3 3sϕ ×∈R  whose columns create 
the frame bases (Fig. 7a) (Ivănescu et al., 2006). 
 

 
Fig. 7. Tentacle system parameters. 
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The independent parameter s is related to the arc-length from the origin of the curve C, a 
variable parameter, where 

 ( )0
1

N

i i
i

l l l
=

= + Δ∑  (26) 

or 

 0l l u= +  (27) 

where 0l  represents the length of the N elements of the arm in the initial position and 

 
1

N

i
i

u l
=

= Δ∑  (28) 

 

determines the control variable of the arm length. 
The position of a point s on curve C is defined by the position vector, 

 ( )srr =  (29) 

when [ ].l,0s ∈  For a dynamic motion, the time variable will be introduced, ( )t,srr = . 

We used a parameterization of the curve C based upon two "continuous angles" ( )sθ  and ( )sq  and length variable u (Fig. 4). 

At each point ( )t,sr , the robot’s orientation is given by a right-handed orthonormal basis 

vector { }zyx e,e,e  and its origin coincides with point ( )t,sr , where the vector ex is tangent 

and ez is orthogonal to the curve C. The position vector on curve C is given by 
 

 ( ) ( ) ( ) ( )[ ]Tt,szt,syt,sxt,sr =  (30) 

where  

 ( ) ( ) ( )∫ ′′′= s

0

sdt,sqcost,ssint,sx θ  (31) 

 ( ) ( ) ( )∫ ′′′= s

0

sdt,sqcost,scost,sy θ  (32) 

 ( ) ( )∫ ′′= s

0

sdt,sqsint,sz  (33) 

with [ ].s,0s ∈′ We can adopt the following interpretation: at any point s the relations (31)-

(33) determine the current position and ( )sΦ determines the robot’s orientation, and the 

robot’s shape is defined by the behaviour of functions ( )sθ  and ( )sq . The robot “grows” 

from the origin by integrating to get ( )t,sr , [ ]ul,0s 0 +∈ . The velocity components are 
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 ( )
0

sin sin cos cos
s

xv q q q dsθ θ θ′ ′ ′ ′ ′ ′ ′= − +∫ ��  (34) 

 ( )∫ ′′′′−′′′−= s

0
y sdcosqcoscosqsinqv θθθ ��  (35) 

 ∫ ′′= s

0
z sdqcosqv �  (36) 

 uvu
�=  (37) 

For an element dm, kinetic and gravitational potential (Douskaia, 1998) energy will be 

 ( )2
u

2
z

2
y

2
x vvvvdm

2

1
dT +++=  (38) 

 zgdmdV ⋅⋅=  (39) 

Where 

 dsdm ρ=  (40) 
From (13)-(15) we obtain 

 ( )∫ ∫⎜⎜
⎜
⎝
⎛ +⎟⎟⎠

⎞
⎜⎜⎝
⎛ ′′′′+′′−= l

0

2
s

0

sdcosqcossinqsinq
2

1
T θθθρ ��  (41) 

 ( ) +⎟⎟⎠
⎞

⎜⎜⎝
⎛ ′′′′−′′′−+ ∫

2
s

0

sdsinqcoscosqsinq θθθ ��   

 dsu
2

1
dssdqcosq

l

0

2

2
s

0
∫∫ +⎟⎟

⎟
⎠
⎞

⎟⎟⎠
⎞

⎜⎜⎝
⎛ ′′′ �� ρ   

 ∫ ∫ ′′= l

0

s

0

dssdqsingV ρ  (42) 

The elastic potential energy will be approximated by two components, one determined by 
the bending of the element 

 ( )∑= += N

1i

2
i

2
i

2

eb q
4

d
kV θ  (43) 

and the other is given by the axial tension/compression energy component 

 2
ea ku

2

1
V =  (44) 
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where we assumed that each element has a constant curvature and a uniform equivalent 
elasticity coefficient k, assumed constant on all the length of the arm. 
The total elastic potential energy will be 

 eaebe VVV +=  (45) 

We will consider ( ) ( )t,sF,t,sF qθ  the distributed forces on the length that determine motion 
and orientation in the θ - plane, q - plane and ( )tFu , the force that determines axial motion, 
assumed constant along the length of the arm. 

3.2 Dynamic model 

In this paper, the manipulator model is considered a distributed parameter (Ivanescu, 2002). 
system defined on a variable spatial domain [ ]l,0=Ω   and  the spatial coordinate is denoted 
by s. 
The dynamic model of this manipulator with hyper-redundant configurations can be 
obtained, in general form, from Hamilton partial differential equations of the distributed 
parameter model, 

 
( ) ( )s,t

H

t

s,t

δν
δω =∂

∂
 (46) 

 
( ) ( ) ( )s,tF

s,t

H

t

s,t +−=∂
∂

δω
δν

 (47) 

where ω  and ν  are the generalized coordinates and momentum densities, respectively, and ( ) ( )/δ δ⋅ ⋅  denotes a functional partial derivative. 
The state of this system at any fixed time t is specified by the set ( ) ( )( )s,t,s,t νω , where [ ] .uq Tθω =  The set of all functions of Ω∈s  that νω ,  can take on at any time is state 
function space ( ).ΩΓ  We will consider that ( ) ( ).L2 ΩΩΓ ⊂  
The control forces have the distributed components along the arm, ( ) ( ) [ ]l,0s,s,tF,s,tF q ∈θ  
and a lumped component ( ).tFu  
A practical form of dynamic model expressed only as a function of generalised coordinates 
is derived by using Lagrange equations developed for infinite dimensional systems, 

 ( ) ( ) ( ) ( ) θδθ
δ

δθ
δ

δθ
δ

θδ
δ

F
s,t

V

s,t

V

s,t

T

s,t

T

t
e =++−⎟⎟⎠

⎞⎜⎜⎝
⎛

∂
∂

�  (48) 

 ( ) ( ) ( ) ( ) q
e F
s,tq

V

s,tq

V
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T

s,tq

T

t
=++−⎟⎟⎠

⎞⎜⎜⎝
⎛

∂
∂

δ
δ

δ
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δ
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�
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e F

u

V

u

V

u

T

u

T

t
=∂

∂+∂
∂+∂

∂−⎟⎠
⎞⎜⎝

⎛
∂
∂

∂
∂

�
 (50) 

where ( ) ( )⋅⋅∂∂ δδ /,/  denote classical and functional partial derivatives (in Gateaux sense]), 

respectively. 
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In Appendix 1 the dynamic model of this ideal spatial tentacle manipulator will be 
developed and the difficulties to obtain a control law will be easily inferred. 
The great number of parameters - theoretically an infinite number of parameters - the 
complexity of the dynamic model make the application of the classical algorithms meant to 
obtain the control law very difficult. In much of the literature concerned with the control of 
these systems, the complexity of the problem is emphasized and various methods that 
compensate all nonlinear terms in dynamics in real time are developed in order to reduce 
the complexity of control systems. Also, simplified procedures are introduced or the 
difficult components are neglected in order to generate a particular law for position or 
motion control. In all these cases, these methods require a large amount of complicated 
calculation so that it is difficult to implement these methods with usual level controllers. In 
addition, the reliability of these methods may be lost when a small error in computation or a 
small change in the system's parameters occurs. 

3.3 Unconstrained control 

The artificial potential is a potential function whose points of minimum are attractors for a 
dissipative controlled system. It was shown that the control of robot motion to a desired 
point is possible if the function has a minimum in the desired point. In this section we will 
extend this result for the infinite dimensional model of the tentacle manipulator with 
variable length. 
We consider that the initial state of the system is given by 

 ( ) [ ]T0000 l,q,s,0 θωω ==  (51) 

 ( ) [ ]T0 0,0,0s,0 ==νν  (52) 

 ( ) ( ) [ ]000 l,0s,s,0qq,s,0 ∈== θθ  (53) 

 ( )0ll0 =  (54) 

corresponding to the initial position of the manipulator defined by the curve 0C  

 ( ) ( )( ) [ ]θ ∈0 0 0 0 0: , , , 0,C s q s l s l  (55) 

The desired point in ( )ΩΓ  is represented by a desired position of the arm, the curve dC , 

[ ]Tdddd l,q,θω =  , 
[ ]Td 0,0,0=ν  

( ) ( )( ) [ ]ddddd l,0s,l,sq,s:C ∈θ  
(56) 

The system motion (48)-(5) corresponding to a given initial state ( )00 , νω  defines a trajectory 
in the state function space ( )ΩΓ . The control problem of the manipulator means the motion 
control by the forces uq F,F,Fθ  from the initial position 0C  to the desired position dC . From 
the viewpoint of mechanics, the desired position ( )dd ,νω  is asymptotically stable if the 
potential function of the system has a minimum at ( )( ) ( )( ) [ ]l,0s,s,s, dd ∈= νωνω  and the 
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system is completely damped. As a control problem in this paper the results of will be 
extended for the infinite dynamic systems.  
We will consider the control forces, 

 ( ) ( ) ( ) ( )s,t
F

s,t

V

s,t

V
s,tF d

e δθ
Πδ

δθ
δ

δθ
δ

θθ −−+=  (57) 

 ( ) ( ) ( ) ( )tu
F

tu

V

tu

V
tF ud

e
u ∂

∂−−∂
∂+∂

∂= Π
 (58) 

The first two terms compensate the gravitational and elastic potential, the third components 
assure the damping control and the last terms define the new artificial potential introduced 
in order to assure the motion to the desired position. The minimum points of this potential 
must be identical with desired positions of the manipulator, as attractors of its motion. For 
example, the potential Π can be selected as a functional of generalised coordinates, 

 ( ) ( )( ) ( )( )( ) ( )2
d0

l

0

2
d

2
d luldssqqsu,q, −++−+−= ∫ θθθΠ  (59) 

The control law (57)-(59) modifies the system potential and the Lagrange equation (48)-(50) 
(Masoud & Masoud, 2000) become 

 ( ) ( ) ( ) d
F

s,ts,t

T

s,t

T

t
θδθ

Πδ
δθ

δ
θδ
δ =+−⎟⎟⎠

⎞⎜⎜⎝
⎛

∂
∂

�  (60) 

 ( ) ( ) ( ) dqF
s,tqs,tq

T

s,tq

T

t
=+−⎟⎟⎠

⎞⎜⎜⎝
⎛

∂
∂

δ
Πδ

δ
δ

δ
δ
�

 (61) 

 
duF

uu

T

u

T

t
=∂

∂+∂
∂−⎟⎠

⎞⎜⎝
⎛

∂
∂

∂
∂ Π

�
 (62) 

The force components 
ddd uq F,F,Fθ  represent the damping components of the control and 

have the form 

 ( ) ( ) ( )∫ ′′′−= l

0

sdt,ss,sKt,sF
d

θθθ �  (63) 

 ( ) ( ) ( )∫ ′′′−= l

0
qq sdt,sqs,sKt,sF

d
�  (64) 

 ( ) ( )tuKtF uud
�−=  (65) 

where ( ) ( )s,sK,s,sK q ′′θ  are positive definite specified spatial weighting functions on ( )ΩΩ ×  and uK  is a positive constant. For practical reasons, the derivative components of 
the control have the form 
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 ( ) ( ) ( )sksss,sK θθ δ ⋅′−=′  (66) 

 ( ) ( ) ( )sksss,sK qq ⋅′−=′ δ  (67) 

3.4 Constrained control 

Let B be the region of the state (Ceah & Wang, 2005) space where the mechanical system 

motion is not admissible, its complement B  is the region of admissible movements and B∂  
is the boundary of B. The control problem is to determine the potential function ( )u,q,θΠ  

which would determine the motion to the desired position ( ) ( )( ) [ ]l,0s,s,s dd ∈νω  and it does 

not penetrate the constrained area B. In terms of the artificial potential, this means that this 

functional should have a single stationary point in B  and grows without limit when the 
system penetrates the boundary B∂ . 
We will consider the following artificial potential, 

 ( ) ( ) ( ){ }u,q,,u,q,maxu,q, 21 θΠθΠθΠ =  (68) 

where ( )u,q,1 θΠ  is the artificial potential for unconstrained problem and ( )u,q,2 θΠ  is the 

potential for constrained control problem. ( )u,q,2 θΠ  is a non-negative, continuous functional defined in B  and 

 ( ) ∞=→ u,q,lim 2
0d

θΠ  (69) 

where d is the distance between the current state ( )u,q,θ  and the boundary B∂ . 

3.5 Appendix 1 

We will consider a spatial tentacle model, an ideal system, neglecting friction and structural 
damping. We assume a uniformly distributed mass with a linear density ρ [kg/m].  
We will use the notations: 

( ) [ ] [ ]ft,0t,,0s,t,sqq ∈∈= l  ( ) [ ] [ ]ft,0t,,0s,t,s ∈∈= lθθ  

( ) [ ] [ ]ft,0t,s,0s,t,sqq ∈∈′′=′  
( ) [ ] [ ]ft,0t,,0s,
t

t,sq
q ∈∈∂

∂= l�  

( ) [ ] [ ]ft,0t,s,0s,
t

t,sq
q ∈∈′∂

′∂=′�  
( ) [ ] [ ]f2

2

t,0t,s,0s,
t

t,sq
q ∈∈′∂

′∂=′��  

( ) [ ] [ ]f2

2

t,0t,s,0s,
t

t,sq
q ∈∈′′∂

′′∂=′′��  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( ) [ ] [ ]fqq t,0t,,0s,t,sFF ∈∈= l  ( ) [ ]fuu t,0t,tFF ∈=  
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From (60)-(62), it results, 

( )( )(∫ ∫ −′′′+′′−′′′′′s

0

s

0

qcosqcosqqcosqsinqsinq��ρ ( )+′−′′′′′′ θθθ sinqsinqcos��  

( )( )+′′′−′′−′′′′′+ qcosqsincosqsinqcosq 2 θθ� ( )θθθ ′′−′′′′′ cosqsinqcos2� ( )) +′′′′−′′′′′− sdsdqqsinqq ��  

∫ =+′′+ s

0
q

2 Fqkd
2

1
sdqcosgρ  

( )(∫ ∫ +′−′′′′′′s

0

s

0

sinqcosqsinq θθρ �� ( ) −′−′′′′′′ θθθ cosqcosqcos�� ( )+′−′′′′′′ θθsinqcosqcosq 2�  

( )−′−′′′′′′+ θθθ sinqcosqcos� ( )) θθθθθ Fkd
2

1
sdsdcosqcosqsinq 2 =+′′′′−′′′′′′′��  

u
2 Fkuu

2

1
u =++ ��� ρρ  

4. Visual servoing system 

4.1 Camera system 

In the Appendix 2 the dynamic model of the 3D spatial hyper redundant arm is 
determinated. Two video cameras provide two images of the whole robot workspace. The 
two images planes are parallel with XOY and ZOY planes from robot coordinate frame, 
respectively (Fig. 8). The cameras provide the images of the scene stored in the frame 
grabber’s video memory being displayed on the computer screens (Hannan & Walker, 
2005); (Kelly, 1996). Related to the image planes, two dimensional coordinate frames, called 
screen coordinate frames or image coordinate systems are defined. Denote 

1SX , 
1SY  and 

2SZ , 
2SY , respectively, the axes of the two screen coordinate frames provided by the two 

cameras. The spatial centers for each camera are located at the distances D1 and D2, with 
respect to the XOY and ZOY planes, respectively. The orientation of the cameras arround 
the optical axes with respect to the robot coordinate frame, are noted with ψ  and φ , 

respectively. A point P in the coordinate frame is 

 P=[ x, y, z]T (70) 

The description of a point P in the two screen coordinate frames are denoted by 

 2SP =[ 1Sx ,
2Sy ] (71) 

 2SP =[
2Sz ,

2Sy ] (72) 

Geometric optics are used to model the mapping between the robot Cartesian space and the 
screen coordinate systems. We assume that the quantization and the lens distortion effects 
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are negligible. The description of the point P=[ x, y, z]T in the robot coordinate frame is given 
in terms of screen coordinate frames as 

 ( ) ⋅⋅+−⋅=⎥⎦
⎤⎢⎣

⎡
)(R

xDy

x

11

1
1

s

s

1

1 φλ
λα ⎥⎥⎦

⎤
⎢⎢⎣
⎡+⎪⎭

⎪⎬⎫⎪⎩
⎪⎨⎧ ⎥⎦

⎤⎢⎣
⎡−⎥⎦

⎤⎢⎣
⎡

1

1

y

x

12

11

c

c

o

o

y

x
 (73) 

for the 
111 SSS YOZ  frame and 

 ( ) ⋅⋅+−⋅=⎥⎦
⎤⎢⎣

⎡
)(R

xDy

z

22

2
2

s

s

2

2 φλ
λα ⎥⎥⎦

⎤
⎢⎢⎣
⎡+⎪⎭

⎪⎬⎫⎪⎩
⎪⎨⎧ ⎥⎦

⎤⎢⎣
⎡−⎥⎦

⎤⎢⎣
⎡

2y

z

22

21

c

c

o

o

y

z
2  (74) 

for the 
222 SSS YOZ  frame, where [

1xc ,
1yc ]T and [

2zc ,
2yc ]T the image centers, 1α  and 2α  are 

the scale factors of the length units in the front image planes given in pixel/m,  R(ψ ) and 
R( φ ) are the rotation matrices generated by clockwise rotating the cameras about their 
optical axes by ψ  and φ  radians, respectively, and [O11, O12]T and [O21, O22]T represent the 
distances between the optical axes and the XOY and ZOY planes, respectively.  
 

 
Fig. 8. Camera system 

In Fig. 9 the frames corresponding to the screen images of the two cameras are presented. 
From the relations (73), (74),  we obtain 

 ( ) ⎥⎦
⎤⎢⎣

⎡⋅+−⋅=⎥⎦
⎤⎢⎣

⎡
y

x

xDy

x

11

1
1

s

s

1

1 Δ
Δ

λ
λαΔ

Δ
 (75) 

 ( ) ⎥⎦
⎤⎢⎣

⎡⋅+−⋅=⎥⎦
⎤⎢⎣

⎡
y

z

xDy

z

22

2
2

s

s

2

2 Δ
Δ

λ
λαΔ

Δ
 (76) 
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